NExT Forum on AI and Next-Generation Communication

Embedding AI in Communication Systems

Yu-Chee Tseng

Chair Professor National Yang Ming Chiao Tung University

> A Speech of MoE National Chair Professorship (教育部國家講座)

About the Speaker

Research Interests

- Internet of Things
- AI and Smart Sensing
- AI and Smart Networking
- AI and Smart Vision

Current Positions

- Chair Professor, NYCU (陽明交通大學/講座教授)
- Director, Pervasive AI Labs, MOST (科技部/人工智慧普適研究中心/主任)
- Founding Dean, College of Artificial Intelligence (陽明交通大學/智慧科學院/院長)

Outline

Wireless "Boundary" Localization "Instant Alerts" for Accurate Messaging in 5G

Part 1: A multi-task LSTM model for construction boundary positioning

Yu-Ting, Liu, J.-J. Chen, Y.-C. Tseng, and F. Li ICCCN 2021

Main Idea

- Boundary = Indoor + Outdoor
- Multi-sensor
- Auto-encoder for feature extraction

5m

10m

Related Works for Localization by DL

Construction of autoencoder combining LSTM

 An integrated autoencoder-based hybrid CNN-LSTM model for COVID-19 severity prediction from lung ultrasound (Computers and Biology Medical 2021)

Densenet autoencoder

 The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation (CVPRW 2017)

• Multi-sensor I/O switching

 Indoor/Outdoor Switching Detection Using Multisensor DenseNet and LSTM (IEEE Internet of Things Journal 2021)

Available Sensors around Boundaries

Multiple Tasks Learning

- Which sensors to trust?
- What position?
- In indoor or outdoor?

Research Steps

- ° Sensor data preprocessing
- Densenet autoencoder
- Route generator
- Multi task learning with Encoder combining LSTM

Sensor data preprocessing - Geomagnetic

Regulate data to global geomagnetic field

Sensor data preprocessing - GPS

• Get pseudorange and ephemeris (ECEF)

 $\circ~$ ECEF to LLA

$$\begin{bmatrix} x_1 & y_1 & z_1 & PR_1 \\ \vdots & \vdots & \vdots & \vdots \\ x_{10} & y_{10} & z_{10} & PR_{10} \end{bmatrix} \begin{bmatrix} x_1 & y_1 & z_1 & PR_1 \\ \vdots & \vdots & \vdots & \vdots \\ x_{10} & y_{10} & z_{10} & PR_{10} \end{bmatrix} \dots$$

time1 time2

Densenet autoencoder

Encoder

Route Generator

•
$$Pl_{iA} = \exp(-\frac{(x_i - x_p)^2 + (y_i - y_p)^2}{2\sigma^2})$$

•
$$Pl_{im} = \exp(-\frac{(x_i + x_m - x_p)^2 + (y_i + y_m - y_p)^2}{2\sigma^2})$$

 $\circ Pl_i = \frac{Pl_{iA} + Pl_{im}}{2}$

 \circ Pl_i normalized, roulette wheel selection

Multi task learning Encoder combining LSTM

Multi task learning Encoder combining LSTM (Uniqueness of Latent Codes)

WiFi

Accuracy & Conclusions

Multi-sensor for boundary separation

Densenet autoencoder for LSTM prediction

• A new multi-task architecture

	output	AE + LSTM	LSTM	DenseAE + LSTM
Distance error	Predict location	0.761 m	0.415 m	0.052 m
	Predict coordination	-	I.06 m	0.16 m

Part 2: Computer Vision-Assisted Instant Alerts in 5G

Yu-Yun Tseng, Po-Min Hsu Jen-Jee Chen, Yu-Chee Tseng

(appeared in ICCCN 2020)

A Safe Ride Needs Lots of Surrounding Info

Concept: Instant Alerts

On-board sensors

• Road-side cameras

Vehicle-to-Everything (V2X)

- Cooperative Awareness Messages (CAMs): periodical heartbeats
- Decentralized Environmental Notification Messages (DENMs)

[30] 3GPP TS 22.185, "Service requirements for V2X services," Jul. 2018[31] 3GPP TR 22.885, "Study on LTE support for Vehicle to Everything (V2X) services," Dec. 2015

5G

"Broadcasting Storm" in Alerting

Alerting Ranges

How can computer vision help? "Vehicle Identification"

Embedding Computer Vision in 5G

- \circ Vehicle identification
- Detect danger events
- Recognize alerting targets
- $\circ\,$ Send alerts by unicast

System Architecture

(1) OBU data. (2) Video data. (3) Vehicle Identification. (4) Danger detection. (5) Instant alert.

25

Vehicle Identification

VID VSA IAT **Fusion Scheme** dynamic static Vehicle Features trajectory speed color type ••• ••• ACK1350 Fusion Model KRU0917 MSE3327 HAA4661

[1] T.-K. Lee et al. "Augmenting Car Surrounding Information by Inter-Vehicle Data Fusion," WCNC, 2019

Transmission Parameters Analysis

$$Q \leq 1 - P_{fail} \qquad (1)$$

$$SINR \rightarrow MCS \rightarrow BER \rightarrow P_{fail} \rightarrow n_{rep}$$

$$SINR = 10 \log \frac{S_{tx} - (128.1 + 37.6 \log D)}{\eta_{\nu} P_{CAM} P_{crash} S_{CAM} + N} \qquad (2)$$

Q: the reliability of successful delivery P_{fail} : probability that a vehicle in G misses n_{rep} : number of repetitions of alert transmission

SINR: Signal-to-Inference-plus-Noise ratio MCS: Modulation and Coding Scheme

D: transmission distance η_v : number of neighboring vehicles

D transmission distance

 η_{ν} number of neighboring vehicles

 n_{rep} transmission repetitions (loss)

Thank You!

Al does help in
1. Wireless "Boundary" Localization
2. "Instant Alerts" in 5G
and may help in many other communications issues, too.